
Neel Natu
Peter Grehan

BHyVe
BSD Hypervisor

1

Introduction

  BHyVe stands for “BSD Hypervisor”
–  Pronounced like beehive

  Type 2 Hypervisor (aka hosted hypervisor)
–  FreeBSD is the Host OS

  Availability
–  NetApp is releasing the source code under the BSD license!
–  Snapshot against 8.1 in svn repository: /projects/bhyve_ref

  Work In Progress

2

Status

  Guest
–  FreeBSD/amd64 releases 7.2 and 8.1
–  SMP - up to 8 virtual cpus
–  I/O - virtio or pci passthru
–  Minor kernel patches required

  Host
–  FreeBSD/amd64 release 8.1
–  Unmodified GENERIC kernel

  Hardware
–  Requires hardware virtualization assist with Nested Page Tables
–  Intel VT-x is supported
–  AMD-V support in progress

3

BHyVe: Logical View

4

FreeBSD
Host Operating System

Hypervisor
Module

Host Application Host Application

Guest Operating System

Guest
App

Guest
App

Virtual Machine

BHyVe: Implementation

5

vcpus

vm enter vm exit

Guest
Physical
Memory

address
translation

allocmem setreg run ioemul

host
threads

virtio-net virtio-block legacy i/o
uart, rtc …

ioctls, memory management, apic emulation

Intel VT-x or AMD-V Nested Page Tables

Host user

Host kernel

vmrun

vmm.ko

Virtual
machine

CPU Virtualization

  Requires Intel VT-x or AMD-V virtualization assists

  Trap into the hypervisor for a variety of reasons
–  Instructions like RDMSR, OUTB, CPUID, HLT, PAUSE
–  Hardware interrupts

  Local APIC is emulated
–  x2APIC mode
–  Accessed by the guest using RDMSR/WRMSR
–  Startup IPI is handled in user-space

  Creates a thread context for the virtual cpu

–  IPIs between virtual cpus map to a fast host IPI

6

Memory Virtualization

  Requires hardware support for Nested Page Tables
–  Guest Physical to Host Physical translation

  Memory is allocated and pinned to virtual machines
–  No sharing between virtual machines
–  No allocate-on-demand
–  Hard allocation makes pci passthru a lot easier

  Memory allocated to virtual machines is hidden from the host
–  Kernel config option MAXMEM
–  hw.physmem tunable

7

PCI I/O Virtualization

  PCI bus topology and configuration emulated in user-space
–  Intercept access to PCI config address and data registers

  Two types of PCI devices on the virtual PCI bus
–  virtio
–  passthru

  Interrupt delivery through MSI only
–  Single as well as multi-vector MSI is supported
–  Legacy is hard because it requires IOAPIC emulation
–  MSI-X is hard because it requires instruction emulation

8

virtio

  Paravirtualized device specification
–  http://ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf

  FreeBSD virtio block and net drivers from
deboomerang@gmail.com
–  Not publicly available under a BSD license

  Backend virtio-net and virtio-block devices in user-space
–  virtio-net uses /dev/tapN to send and receive ethernet frames
–  virtio-block reads/writes to a file on the host filesystem

9

PCI Passthru

  Guest has direct access to a PCI device
  Some configuration registers are still emulated

–  BAR registers
–  MSI capability

  DMA transfers will target guest physical addresses
–  IOMMU translates from guest physical to host physical addresses

  Stub driver in the host forwards interrupts from the device to the
guest

  Virtual MSI capability for passthru devices that only support
legacy interrupts

  ‘blackhole’ driver prevents the host from attaching to passthru
devices

10

Guest Modifications

  Custom console and debug port
–  Done for expediency
–  Not necessary if we have a 16550 device model

  Local APIC access via x2APIC MSRs

  AP bringup changed to start execution directly in 64-bit mode

–  Required if real-mode guest execution is not supported

11

User-space API

  A virtual machine appears in the host filesystem as a device
node

  ioctls used to control and configure the virtual machine
–  20 in total
–  For e.g. setreg, pincpu, run, interrupt, getstats

  Can read(), write() and mmap() the virtual machine device node
–  Useful to inspect the virtual machine's memory
–  dd if=/dev/vmm/testvm of=memdump bs=1024 count=1024

12

Performance

  Features
–  Address space identifiers for virtual cpus
–  Minimal overhead host IPIs
–  Some guest state is lazily saved only on “slow” trap to user-space

  Guest floating point registers
  System call related MSRs

  “make buildworld”
–  4 cores, 2GB memory, 1GbE NIC, 1 SATA disk
–  /usr/src is mounted over NFS
–  /usr/obj is mounted on a block device

13

Configuration Build time in seconds
Bare Metal 1308
Partitioned 1336
Virtualized 1446

Future Opportunities

  Support Windows, Linux and *BSD guests

  Support AMD’s hardware virtualization assist

  Guest suspend/resume and live migration

  BIOS emulation

14

15

