Virtualization and BSD

- Approaches to Virtualization
- Benefits of Virtualization
- Para-virtualization in depth
- Para-virtualization on x86 and sparc64

Virtualization Approaches

Process Virtualization

- Jails
- Vservers (Linux)
- Zones (Solaris)

OS Virtualization (para-virtualization)

- Xen (Cambridge, UK)
- T1 hypervisor (Sun)
- VMI (VMware)
- Phype (IBM)
- CPU Virtualization (emulation)
 - VMware
 - Virtual PC (Microsoft)

OS Virtualization Benefits for Development

- MMU interface can be decoupled from the OS
 - Provides future sun4v processors with the backward compatibility (on x86 by design)
- Debugging / fault isolating drivers by running them in their own domain
 - Faulty devices / drivers don't bring down the whole system

Virtualization Benefits for Administration

Server Consolidation

- Servers typically average 10-20% utilization
- Large potential impact on power, space, and network ports
- Simplified Provisioning
 - Allocating a new system can be just allocating an IP address and storage

OS Virtualization Benefits for Administration

Reduction in planned downtime

- Running virtual machines can be migrated across the network – actual "down time" determined by the size of the writable working set
- Consolidating different operating systems or different versions of the same operating system
- "Reboot" virtual machines independently of each other
- Natural interfaces for QoS across all resources

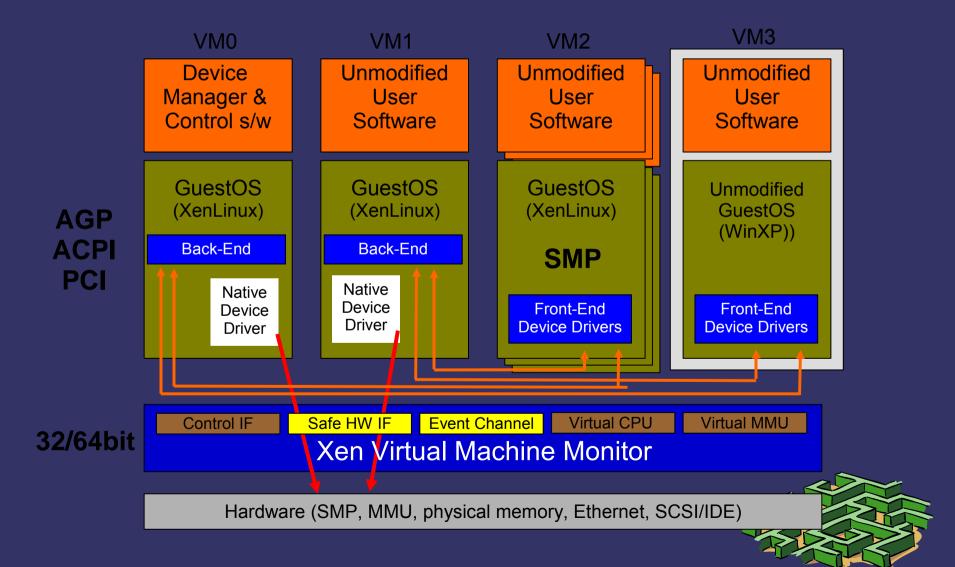
Paravirtualization In-Depth

Memory Partitioning
CPU Time
CPU Privilege
Devices / Interrupts
Virtual Memory

Memory Allocation

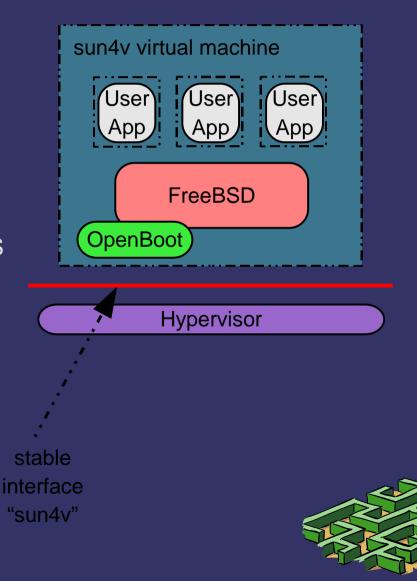
Real / Physical

- Each guest is given a subset of the memory on the machine
- Sun uses the traditional terminology for the distinction -- real addresses are addresses that guest can access and physical are the actual hardware addresses
- Guests
- Physical / Machine
 - Xen makes the same distinction but uses the terms from the earlier "Disco" papers
- Balloon driver

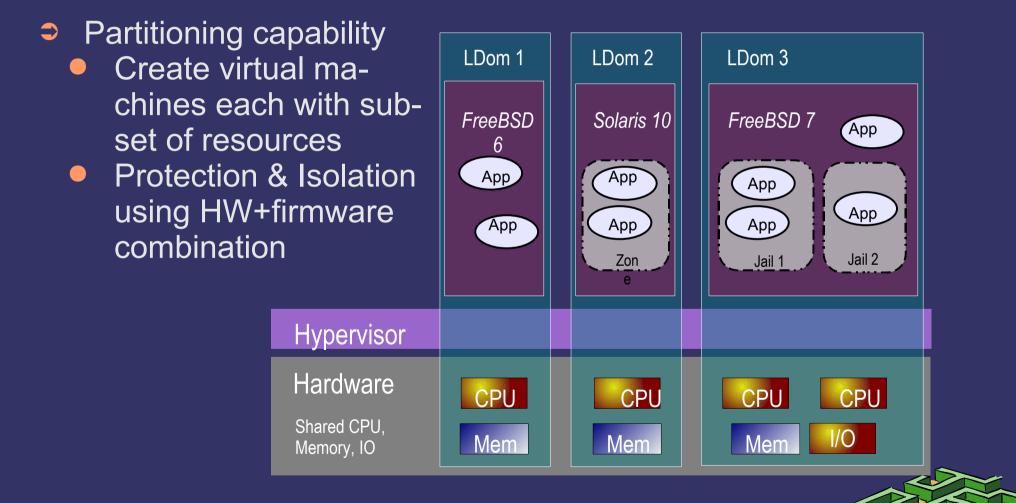


CPU Time

Xen schedulers


- Guest operating systems are multiplexed on the CPUs by a scheduler
- A number of different schedulers exist
- Difficult to get right, awkward interaction with driver domains, to work well with SMP requires some form of gang scheduling
- Sun4v strands
 - The T1 exposes 32 "strands", the strands can be dynamically added to/removed from running domains

Xen 3.0 Architecture



Virtual Machine for SPARC

- Thin software layer between OS and platform hardware
- Para-virtualised OS
- Hypervisor + sun4v interface
 - Virtualises machine HW and isolates OS from register-level
 - Delivered with platform not OS
 - Not itself an OS

Sun4v Logical Domains Architecture

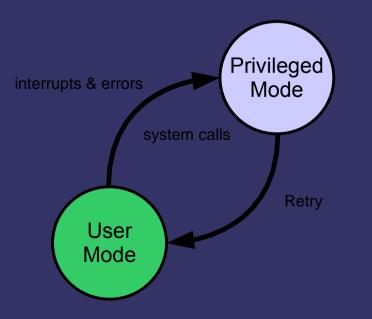
CPU Privilege

Xen ring/segment usage

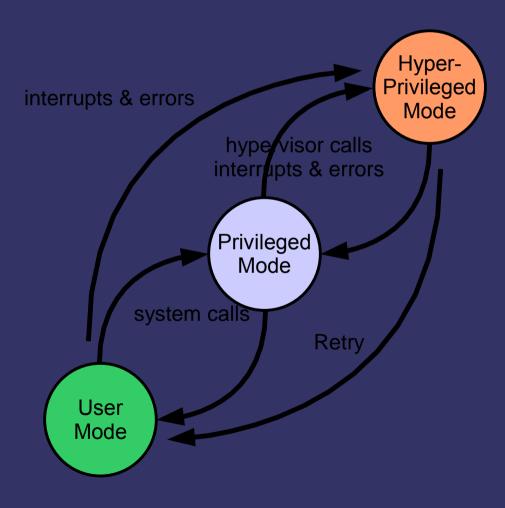
- i386: Xen runs in ring 0, guest OS runs in ring 1
- x86_64: most models lack segment checks in long mode – Xen runs in ring 0, guest OS runs in ring 3 with a different page directory from guest

Sun4v adds a hyperprivileged mode

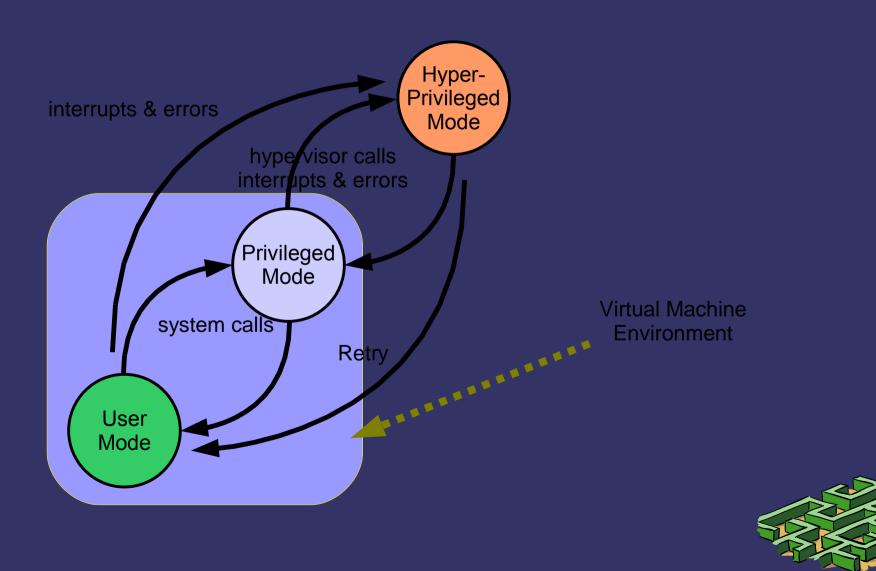
- Sun4v adds a hpstate register (hyperprivileged pstate) some events that would previously cause a switch to privileged mode now switch to hyperprivileged
- all guest state lives in the guest allowing the HV to be updated in place


Privileged mode constrained

- Close derivative of legacy privileged mode, but:
 - No access to diagnostic registers
 - No access to MMU control registers
 - No access to interrupt control registers
 - No access to I/O-MMU control registers
 - All replaced by Hypervisor API calls
- UltraSPARCness remains with minor changes
 - timer tick registers
 - softint registers etc.
 - trap-levels & global registers etc.
 - register window spill/fill


Legacy SPARC execution mode

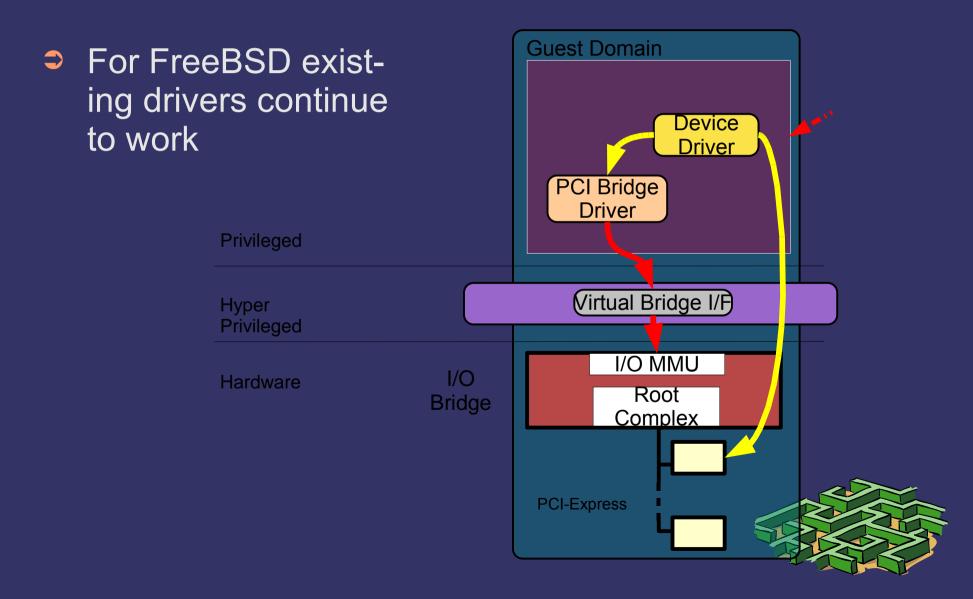
Existing sun4u chips



New SPARC Execution mode

New SPARC Execution mode

Devices / Interrupts


- DOM0 driver domains
- Allocating PCI-e nexus
- Virtual network and block devices
- Interrupt handling

Xen I/O Architecture

- Xen IO-Spaces delegate guest OSes protected access to specified h/w devices
 - Virtual PCI configuration space
 - Virtual interrupts
- Devices are virtualised and exported to other VMs via Device Channels
 - Safe asynchronous shared memory transport
 - Backend' drivers export to 'frontend' drivers
 - Net: use normal bridging, routing, iptables
 - Block: export any blk dev e.g. sda4,loop0,vg

Sun4v direct I/O model

Virtual Memory x86

Architected Page Tables

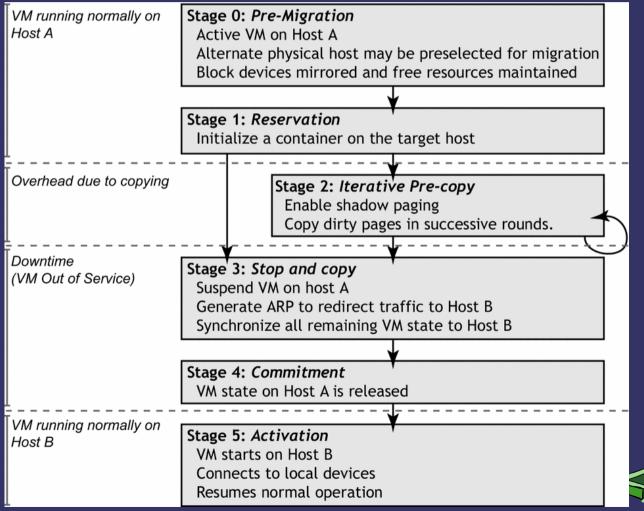
- Difficult to abstract pages are stateful can't allow guest to update directly to prevent guest from mapping other guests memory
 - (L3 vs. L2 etc. page tables)
 - Other global resources that can't be manipulated directly (GDT, LDT, etc.)
- Xen directly exposes page tables to the guest
 - Upside relatively few changes to MD VM
 - Downside large amounts of state required for tracking type of each page, exposing super-pages is more difficult, batching updates requires writable page tables which frequently don't work outside of Linux

Virtual Memory x86 II

- Page table updates are all made via hypercalls
 - Setting cr3
 - Writes to page directories and page tables
 - Page table updates can be batched by means of "writable page tables", but their use precludes the use of linear page tables.

Virtual Memory Sparc

Software loaded TLB


- Sparc v8 and v9 relied on a TSB (translation storage buffer) as a direct mapped secondary TLB
 - Benefits of TSB over page tables:
 - allows for arbitrary page sizes
 - Single memory access for lookup
 - Lookups can be done in parallel for set associative TSBs
 - Flat structure avoids typing issues
- Happily this also makes for a good interface with the hypervisor
 - Guest now registers TSB with the hypervisor on context context switch – hypervisor services TLB misses from the TSB

Live VM Relocation

- Why is VM relocation useful?
 - Managing a pool of VMs running on a cluster
 - Taking nodes down for maintenance
 - Load balancing VMs across the cluster
- Why is it a challenge?
 - VMs have lots of state
 - Some VMs will have soft real-time requirements
 - E.g. web servers, databases, game servers
 - Can only commit limited resources to migration

VM Relocation Strategy

Writeable Working Set

80000 gzip mcf crafty parser perlbmkgap vortex bzip2 twolf vpr gcc eon 70000 60000 Number of pages 50000 40000 30000 20000 10000 0 2000 4000 6000 8000 10000 0 Elapsed time (secs)

Tracking the Writable Working Set of SPEC CINT2000

Xen and the BSDs

- NetBSD had full dom0 support for Xen 2 full support for Xen3 a work in progress
- OpenBSD has seen no effort on Xen support to date – but Chris Jones has proposed it as an SoC project
- FreeBSD 7.0 has 3.x support for unprivileged guests and some extra "driver domain" functionality
- Some work has been done on dom0 but has been neglected for several months – an SoC project is being pushed

Xen and FreeBSD

- Large amounts of work required to integrate the Xen toolset into the FreeBSD environment and make Xen usable for the average user
- Xen appears to have no thought given to incremental versioning – FreeBSD will likely support point versions
- Less compelling now that Vmware Server is free and VMI is available
 - If performance difference is less than 10%
 Vmware's polish and ease of use wins out

Sun4v and FreeBSD

- Sun's hypervisor has a thoroughly documented API and an established versioning interface
- The challenge is more general and lies largely in FreeBSD's scaling bottlenecks and the lack of a maintainer for sparc64

VMI and FreeBSD

- Not as Linux-centric
- FreeBSD will ultimately seek a unified interface for Xen and VMI
- Objective of VMI is to have a non-disruptive P2V by having the same binary support both native and virtual

What's next?

Xen

DomU support (unprivileged guest)

- Complete balloon driver
- Make sleep work prior to interrupts being enabled for xenbus

Dom0 support (initial domain)

- Stabilization
- Drivers to support domU (netback, blkback)
- - Need further investigation
- Sun4v
 - Dom0 support
 - Pmap stabilization
 - DomU support
 - Virtual drivers

