
Virtualization and BSD

➲ Approaches to Virtualization
➲ Benefits of Virtualization
➲ Para-virtualization in depth
➲ Para-virtualization on x86 and sparc64

Virtualization Approaches

➲ Process Virtualization
● Jails
● Vservers (Linux)
● Zones (Solaris)

➲ OS Virtualization (para-virtualization)
● Xen (Cambridge, UK)
● T1 hypervisor (Sun)
● VMI (VMware)
● Phype (IBM)

➲ CPU Virtualization (emulation)
● VMware
● Virtual PC (Microsoft)

OS Virtualization Benefits for
Development

➲ MMU interface can be decoupled from the
OS

● Provides future sun4v processors with the
backward compatibility (on x86 by design)

➲ Debugging / fault isolating drivers by running
them in their own domain

● Faulty devices / drivers don't bring down the
whole system

Virtualization Benefits for
Administration

➲ Server Consolidation
● Servers typically average 10-20% utilization
● Large potential impact on power, space, and

network ports
➲ Simplified Provisioning

● Allocating a new system can be just allocating an
IP address and storage

OS Virtualization Benefits for
Administration

➲ Reduction in planned downtime
● Running virtual machines can be migrated across

the network – actual “down time” determined by
the size of the writable working set

➲ Consolidating different operating systems or
different versions of the same operating sys-
tem

➲ “Reboot” virtual machines independently of
each other

➲ Natural interfaces for QoS across all re-
sources

Paravirtualization In-Depth

➲ Memory Partitioning
➲ CPU Time
➲ CPU Privilege
➲ Devices / Interrupts
➲ Virtual Memory

Memory Allocation

➲ Real / Physical
● Each guest is given a subset of the memory on

the machine
● Sun uses the traditional terminology for the dis-

tinction -- real addresses are addresses that
guest can access and physical are the actual
hardware addresses

● Guests
➲ Physical / Machine

● Xen makes the same distinction but uses the
terms from the earlier “Disco” papers

➲ Balloon driver

CPU Time

➲ Xen schedulers
● Guest operating systems are multiplexed on the

CPUs by a scheduler
● A number of different schedulers exist
● Difficult to get right, awkward interaction with

driver domains, to work well with SMP requires
some form of gang scheduling

➲ Sun4v strands
● The T1 exposes 32 “strands”, the strands can be

dynamically added to/removed from running
domains

Xen 3.0 Architecture

Event Channel Virtual MMUVirtual CPU Control IF

Hardware (SMP, MMU, physical memory, Ethernet, SCSI/IDE)

Native
Device
Driver

GuestOS
(XenLinux)

Device
Manager &
Control s/w

VM0

Native
Device
Driver

GuestOS
(XenLinux)

Unmodified
User

Software

VM1

Front-End
Device Drivers

GuestOS
(XenLinux)

Unmodified
User

Software

VM2

Front-End
Device Drivers

Unmodified
GuestOS
(WinXP))

Unmodified
User

Software

VM3

Safe HW IF

Xen Virtual Machine Monitor

Back-End Back-End

32/64bit

AGP
ACPI
PCI

SMP

Virtual Machine for SPARC

• Thin software layer between OS
and platform hardware

• Para-virtualised OS

• Hypervisor + sun4v interface
• Virtualises machine HW and isolates OS

from register-level
• Delivered with platform not OS
• Not itself an OS Hypervisor

FreeBSD

User
App

sun4v virtual machine

stable
interface
“sun4v”

User
App

OpenBoot

User
App

Sun4v Logical Domains
Architecture

Hardware
Hypervisor

LDom 1

FreeBSD
6

CPU

Mem

LDom 2

Solaris 10

CPU

Mem

LDom 3

FreeBSD 7

CPU

Mem

Jail 1Zon
e

Jail 2

Shared CPU,
Memory, IO I/O

CPU

➲ Partitioning capability
● Create virtual ma-

chines each with sub-
set of resources

● Protection & Isolation
using HW+firmware
combination

App

App

AppApp

App

App

App App

CPU Privilege

➲ Xen ring/segment usage
● i386: Xen runs in ring 0, guest OS runs in ring 1
● x86_64: most models lack segment checks in

long mode – Xen runs in ring 0, guest OS runs in
ring 3 with a different page directory from guest

➲ Sun4v adds a hyperprivileged mode
● Sun4v adds a hpstate register (hyperprivileged

pstate) some events that would previously cause
a switch to privileged mode now switch to hyper-
privileged

● all guest state lives in the guest allowing the HV
to be updated in place

Privileged mode constrained

➲ Close derivative of legacy privileged
mode, but:

● No access to diagnostic registers
● No access to MMU control registers
● No access to interrupt control registers
● No access to I/O-MMU control registers
● All replaced by Hypervisor API calls

➲ UltraSPARCness remains with minor
changes

● timer tick registers
● softint registers etc.
● trap-levels & global registers etc.
● register window spill/fill

Legacy SPARC execution mode

Privileged
Mode

User
Mode

interrupts & errors

system calls

Retry

➲ Existing sun4u chips

New SPARC Execution mode

Hyper-
Privileged

Mode

Privileged
Mode

User
Mode

interrupts & errors

system calls

hypervisor calls
interrupts & errors

Retry

New SPARC Execution mode

Hyper-
Privileged

Mode

Privileged
Mode

User
Mode

interrupts & errors

system calls

hypervisor calls
interrupts & errors

Retry

Virtual Machine
Environment

Devices / Interrupts

➲ DOM0 driver domains
➲ Allocating PCI-e nexus
➲ Virtual network and block devices
➲ Interrupt handling

Xen I/O Architecture

➲ Xen IO-Spaces delegate guest OSes
protected access to specified h/w devices

● Virtual PCI configuration space
● Virtual interrupts

➲ Devices are virtualised and exported to
other VMs via Device Channels

● Safe asynchronous shared memory transport
● ‘Backend’ drivers export to ‘frontend’ drivers
● Net: use normal bridging, routing, iptables
● Block: export any blk dev e.g. sda4,loop0,vg3

Sun4v direct I/O model

➲ For FreeBSD exist-
ing drivers continue
to work

I/O
Bridge

PCI Bridge
Driver

Device
Driver

Root
Complex

I/O MMU

Guest Domain

Virtual Bridge I/FHyper
Privileged

Privileged

Hardware

PCI-Express

Virtual Memory x86

➲ Architected Page Tables
● Difficult to abstract – pages are stateful can't al-

low guest to update directly to prevent guest from
mapping other guests memory

● (L3 vs. L2 etc. page tables)
● Other global resources that can't be manipulated direct-

ly (GDT, LDT, etc.)
● Xen directly exposes page tables to the guest

● Upside – relatively few changes to MD VM
● Downside – large amounts of state required for tracking

type of each page, exposing super-pages is more diffi-
cult, batching updates requires writable page tables
which frequently don't work outside of Linux

Virtual Memory x86 II

➲ Page table updates are all made via hyper-
calls

● Setting cr3
● Writes to page directories and page tables

● Page table updates can be batched by means of
“writable page tables”, but their use precludes the use
of linear page tables.

Virtual Memory Sparc

➲ Software loaded TLB
● Sparc v8 and v9 relied on a TSB (translation

storage buffer) as a direct mapped secondary
TLB

● Benefits of TSB over page tables:
● allows for arbitrary page sizes
● Single memory access for lookup
● Lookups can be done in parallel for set associative TSBs
● Flat structure avoids typing issues

● Happily this also makes for a good interface with
the hypervisor

● Guest now registers TSB with the hypervisor on context
context switch – hypervisor services TLB misses from
the TSB

Live VM Relocation
➲ Why is VM relocation useful?

● Managing a pool of VMs running on a cluster
● Taking nodes down for maintenance
● Load balancing VMs across the cluster

➲ Why is it a challenge?
● VMs have lots of state
● Some VMs will have soft real-time require-

ments
● E.g. web servers, databases, game servers

● Can only commit limited resources to migration

VM Relocation Strategy

Writeable Working Set

Xen and the BSDs

➲ NetBSD had full dom0 support for Xen 2 –
full support for Xen3 a work in progress

➲ OpenBSD has seen no effort on Xen support
to date – but Chris Jones has proposed it as
an SoC project

➲ FreeBSD 7.0 has 3.x support for unprivi-
leged guests and some extra “driver domain”
functionality

➲ Some work has been done on dom0 – but
has been neglected for several months – an
SoC project is being pushed

Xen and FreeBSD

➲ Large amounts of work required to integrate
the Xen toolset into the FreeBSD environ-
ment and make Xen usable for the average
user

➲ Xen appears to have no thought given to in-
cremental versioning – FreeBSD will likely
support point versions

➲ Less compelling now that Vmware Server is
free and VMI is available

● If performance difference is less than 10% -
Vmware's polish and ease of use wins out

Sun4v and FreeBSD

➲ Sun's hypervisor has a thoroughly docu-
mented API and an established versioning
interface

➲ The challenge is more general and lies
largely in FreeBSD's scaling bottlenecks
and the lack of a maintainer for sparc64

VMI and FreeBSD

➲ Not as Linux-centric
➲ FreeBSD will ultimately seek a unified inter-

face for Xen and VMI
➲ Objective of VMI is to have a non-disruptive

P2V by having the same binary support
both native and virtual

What's next?

➲ Xen
● DomU support (unprivileged guest)

● Complete balloon driver
● Make sleep work prior to interrupts being enabled for

xenbus
● Dom0 support (initial domain)

● Stabilization
● Drivers to support domU (netback, blkback)

➲ VMI
● Need further investigation

➲ Sun4v
● Dom0 support

● Pmap stabilization
● DomU support

● Virtual drivers

